Ill-conditioned Convex Processes and Linear Inequalities
نویسنده
چکیده
We prove the smallest possible norm of a linear perturbation making a closed convex process nonsurjective is the inverse of the norm of the inverse process. This generalizes the fundamental property of the condition number of a linear map. We then apply this result to strengthen a theorem of Renegar measuring the size of perturbation necessary to make an inequality system inconsistent.
منابع مشابه
Ill-Conditioned Inclusions
A square system of linear equations is ‘ill-conditioned’ when the norm of the corresponding inverse matrix is large. This norm bounds the size of the solution, and measures how close the system is to being inconsistent: it is thus of fundamental computational significance. We generalize this idea from linear equations to inclusions governed by closed convex processes, and hence to ‘conic linear...
متن کاملLinear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization
In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...
متن کاملHermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions
Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.
متن کامل(m1,m2)-AG-Convex Functions and Some New Inequalities
In this manuscript, we introduce concepts of (m1,m2)-logarithmically convex (AG-convex) functions and establish some Hermite-Hadamard type inequalities of these classes of functions.
متن کاملHermite-Hadamard Type Inequalities for MφA-Convex Functions
This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...
متن کامل